X2CrNiMoN22-5-3 Acciaio Inossidabile Qualità materiale Austenitico-Ferritico (Duplex) Numero 1.4462 a)

Composizione chimica

C%	Si%	Mn%	Р%	S%	Cr%	Ni%	N%	Mo%	
max	max	max	max	max					
0,03	1,00	2,00	0,035	0,015	21,0-23,0	4,5-6,5	0,10-0,22	2,5-3,5	EN 10088-1: 2014
± 0.005	+ 0.05	<u>+</u> 0.04	+ 0.005	+ 0.003	± 0.25	± 0.10	± 0.02	± 0.10	_

Scostamenti ammessi per analisi di prodotto.

a) Previo accordo, questo acciaio può essere fornito con valore, di resistenza al pitting, maggiore di 34 (PRE = Cr + 3,3Mo + 16N)

Temperature	in °C				
Temperatura di fusione	Deformazione a caldo	Solubilizzazione +AT	Stabilizzazioneliz- zazione	Ricottura di lavorabilità +A	Saldatura MMA con elettrodi AWS preriscaldo post saldatura
1440-1390	1150-950	1100-1020 acqua	non adatta	non adatta	100 solubilizzazione
Infragilimento	Precipitazione di carburi	Formazione fase sigma	Distensione +SR soste brevi	Ricristalliz- zazione +RA	giunzione con acciai carbonio legati CrMo inossidabili
475	800-450	950-700	600-550 aria	1100-1020 raffr. rapido	E309L-16 E309MoL-15 E317L riparazione o riporto della base F 2209-17

Trattamento chimico - Decapaggio (52% HNO₃) + (65% HF) caldo - Passivazione 20 - 45% HNO₃ a freddo

Proprietà meccaniche

Materiale trattato termicamente EN 10088-3: 2014 in condizione 1C, 1E, 1D, 1X, 1G, 2D

sezione		Prova di tra	azione a +20 °C						
mm		R	Rp 0.2	A %	Α%	Kv +20 °C	Kv -40 °C (L)	HB a)	
oltre	fino a	N/mm ²	N/mm ² min	min (L)	min (T)	J min (L)	J min ^{b)}	max	
	160	650-880	450	25	, ,	100	40	270	+AT solubilizzato
					L) = L 100=0			v	7 1.1 00.000

a) solo per informazione. (L) = longitudinale (T) = trasversale b) EN 10272 : 2003

sezione	Э	Prova di tra	zione a +20 °C					
mm		R	Rp 0.2	Α%	Α%	Kv +20 °C	Kv +20 °C	
oltre	fino a	N/mm ²	N/mm ² min	min (L)	min (T)	J min (L)	J min (T)	
	10 b)	850-1150	650	12				
10	16	850-1100	650	12				+AT
16	40	650-1000	450	15		100		materiale
40	63	650-1000	450	15		100		solubilizzato
63	160	650-880	450	25		100		

b) nella gamma 1 mm \leq d \leq 5 mm i valori sono validi solo per i tondi - le proprietà meccaniche delle barre non tonde con spessore < 5 mm devono essere concordate al momento della richiesta e dell'ordine. (L) = longitudinale (T) = trasversale

Fucinato +AT materiale solubilizzato FN 10250-4: 2001

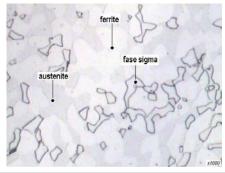
i aoiiia	• • • • • • • • • • • • • • • • • • • •	atorialo ociab		1. 2001					
sezione	!	Prova di tra	azione a +20 °C						
mm		R	Rp 0.2	A %	A %	Kv +20 °C	Kv +20 °C	Kv -196 °C	
oltre	fino a	N/mm ²	N/mm ² min	min (L)	min ((T)	J min (L)	J min (T)	J min (T)	
	350	650-880	450	25	20	100	60		

Incrudito a freddo EN 10263-5: 2003

sezione)	Prova di tra	zione a +20 °C				
mm		R	Z %		R	Z %	
oltre	fino a	N/mm ²	min		N/mm ²	min	
5	10	1020 max		+AT+C	900 max	55	+AT+C+AT
10	25	1000 max		+AT+C	880 max	55	+AT+C+AT

Tabella di incrudimento	(laminato a caldo +AT+C). Valori indicativi
-------------------------	-------------------------	----------------------

Riduzion		0	10	20	30	40	50	60	70	80	
Δ	%	34	23	13	8	6	5	4.5	3	2	
Rp 0.2	N/mm ²	560	800	960	1080	1160	1270	1280	1330	1350	
R	N/mm ²	750	850	1000	1120	1210	1300	1340	1370	1370	
labella	ai ilicrua	imento (ic	ammato a calu	0 +A1+6). Võ	alon mulcativi						


Dopo deformazione a freddo con riduzione oltre il 10% si consiglia un trattamento di solubilizzazione

X2CrNiMoN22-5	-3 n°1	.4462	austenitico-	ferritico (Duplex))					Lucefin Group
/alori minimi di	snerva	mento e	rottura a te	mperature eleva	ate, materia	ale +AT solut	oilizzato E	N 1002	3-7: 2007	7
Rp 0.2 N/mm	l ²	422 a)	360	335 31	15	300		_	_	
R N/mm		621 a)	590	570 55	50	540				
Prova a °C		50	100	150 20	00	250				
determinato pe	r interpo	olazione li	neare							
spansione terr	nica	10 ⁻⁶ • K ⁻¹		▶ 1:	3.0	13.5	14.0			
odulo elastico		longitudir	ale GPa	200 1	94	186	180			
lumero di Pois	son	V		0.25						
Resistività elet	trica	$\Omega \bullet \text{mm}^2/$	m	0.80	.85	0.90	1.00			
Conduttività ele	ttrica	Siemens	m/mm²	1.25						
alore specifico)	J/(Kg•K)		500 5	30	560	590			
)ensità		Kg/dm ³		7.80						
Conducibilità to			W/(m∙K)		6.0	17.0	18.0			
Permeabilità ma	gnetica	a relativa	μr	magnetizzabile						
C					00	200	300			
simbolo ► indi	ca fra 20	0°C e10	00 °C, 20 °C	c e 200 °C						
Resistenza alla	corrosi	one	Atmosfera			Azione chimi	ca			x intercristallina,
acqua salmastra			industriale	marina	а	media	ossidant	e rid	ucente	pitting, crevice,
			X	x		X	X			tensocorrosione
/lagnetico		si								
ruciolabilità		diffico	ltosa							
ndurimento		((1)								
naurimento				leformazioni plas						
	servizio						egare oltre	i +340	°C. Ossi	dazione in aria 1000
emperatura di uropa	US	o Usato SA	nei recipien USA	ti in pressione fi	no a -200 ° Rus	°C. Non impie ssia	Giappon		India	Corea
emperatura di Europa N	U \$ NU	o Usato SA NS	nei recipien USA ASTM	ti in pressione fii Cina GB	no a -200 ° Rus GOS	°C. Non impie ssia _{ST}	Giappon JIS	ie		Corea KS
emperatura di Europa N	U \$ NU	o Usato SA NS	nei recipien USA	ti in pressione fi	no a -200 ° Rus GOS	°C. Non impie ssia	Giappon JIS	ie	India	Corea
Temperatura di Europa N (2CrNiMoN22-5	US UN -3 S3	SA NS 31803	nei recipien USA ASTM Type 2205	ti in pressione fii Cina GB 022Cr22Ni5Mc	no a -200 ° Rus GOS D3N 02C	°C. Non impie ssia ST Ch22N5AM2	Giappor JIS (SUS 32	ie	India	Corea KS
Femperatura di Europa EN K2CrNiMoN22-5	US UN -3 S3	SA NS 31803	nei recipien USA ASTM Type 2205	ti in pressione fii Cina GB	no a -200 ° Rus GOS D3N 02C	°C. Non impie ssia ST Ch22N5AM2	Giappor JIS (SUS 32	ie	India	Corea KS
Temperatura di Europa EN K2CrNiMoN22-5 Formule empirici	US UN -3 S3	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas	ti in pressione fil Cina GB 022Cr22Ni5Mo sificazione media	Rus GOS D3N 02C	C. Non impie ssia GT Ch22N5AM2 struttura EN	Giappor JIS (SUS 329	9J3L)	India IS	Corea KS
Temperatura di Europa EN (2CrNiMoN22-5 Formule empirich	US UN -3 S3 he per a	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas	Cina GB 022Cr22Ni5Mc sificazione media	Rus GOS D3N 02C	PC. Non impiessia ET Ch22N5AM2 struttura EN 1	Giappon JIS (SUS 329 10088-1	9J3L) Auster	India IS	Corea KS (STS 329J)
emperatura di Europa N (2CrNiMoN22-5 Formule empirica ENA Jumero della Fe	US UN -3 S3 ne per a	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,341 FNA = 4,441	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4	Rus GOS D3N 02C ante micros	PC. Non imple ssia Ch22N5AM2 struttura EN 1 FNA = max 5 FNA = 6,0 -	Giappor JIS (SUS 329 10088-1 5,9 11,9	9J3L) Auster	India IS	Corea KS
FINA Numero della Fe pasata sul diagra	US UN -3 S3 ne per a rrite amma	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,341 FNA = 4,441	Cina GB 022Cr22Ni5Mc sificazione media	Rus GOS D3N 02C ante micros	PC. Non impiessia ET Ch22N5AM2 struttura EN 1	Giappor JIS (SUS 329 10088-1 5,9 11,9	9J3L) Auster	India IS	Corea KS (STS 329J)
emperatura di Europa N (2CrNiMoN22-5 Formule empirich NA Numero della Fe pasata sul diagra Schaeffler /de Lo	US UN -3 S3 ne per a rrite amma	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,341 FNA = 4,441	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4	Rus GOS D3N 02C ante micros	PC. Non imple ssia Ch22N5AM2 struttura EN 1 FNA = max 5 FNA = 6,0 -	Giappor JIS (SUS 329 10088-1 5,9 11,9	9J3L) Auster	India IS nitici o: FNA =	Corea KS (STS 329J: (-40) - 20
emperatura di Europa N (2CrNiMoN22-5 Formule empirich NA Numero della Fe pasata sul diagra Schaeffler /de Lo	US UN -3 S3 ne per a rrite amma	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove:	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4	Rus GOS D3N 02C ante micros per per	PC. Non imple ssia Ch22N5AM2 struttura EN 1 FNA = max 5 FNA = 6,0 -	Giappor JIS (SUS 329 10088-1 5,9 11,9	Auster quand	India IS nitici o: FNA =	Corea KS (STS 329J: (-40) - 20
emperatura di Europa N (2CrNiMoN22-5 Formule empirich NA Iumero della Fe Pasata sul diagra Schaeffler /de Lo	US UN -3 S3 ne per a rrite amma	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove: F= 1,5Si + 0	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4 = - 3,23A - 32,2	Rus GOS D3N 02C ante micros per per	PC. Non impie ssia Ch22N5AM2 struttura EN 1 FNA = max 5 FNA = 6,0 – FNA = min 1	Giappor JIS (SUS 329 10088-1 5,9 11,9	Auster quand	India IS iitici b: FNA =	Corea KS (STS 329J: (-40) - 20 ritico (Duplex) 30 – 50
Europa N (2CrNiMoN22-5) Formule empirich Numero della Febasata sul diagra Schaeffler /de Lo	US UN -3 S3 ne per a rrite amma	SA NS 31803	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove: F= 1,5Si + 0	Cina GB 022Cr22Ni5Mo sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4 = - 3,23A - 32,2 Cr + Mo + 2Ti + C	Rus GOS D3N 02C ante micros per per	PC. Non impie ssia Ch22N5AM2 struttura EN 1 FNA = max 5 FNA = 6,0 – FNA = min 1	Giappor JIS (SUS 329 10088-1 5,9 11,9	Auster quand	India IS iitici D: FNA =	Corea KS (STS 329J: (-40) - 20 ritico (Duplex) 30 – 50
Europa N (2CrNiMoN22-5 Formule empirich Numero della Febasata sul diagra Schaeffler /de Lo	US UN -3 S3 ne per a rrite amma	D Usato SA NS 31803	nei recipien USA ASTM Type 2205 Sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove: F= 1,5Si + 0 A= 30C + 0,	Cina GB 022Cr22Ni5Mo sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4 = - 3,23A - 32,2 Cr + Mo + 2Ti + C	Rus GOS D3N 02C ante micros per per per 0,5Nb + 0,5Cu + 0	PC. Non impie ssia Ch22N5AM2 struttura EN 1 FNA = max 5 FNA = 6,0 – FNA = min 1	Giappor JIS (SUS 320 10088-1 5,9 11,9 2	Auster quand	India IS Mitici D: FNA = Mitico-Fer D: FNA = SM =	Corea KS (STS 329J: (-40) - 20 ritico (Duplex) 30 – 50
FINA Numero della Fe pasata sul diagra Schaeffler /de Lo	US UN The per a rrite amma ang IB-2433	D Usato SA NS 31803	nei recipien USA ASTM Type 2205 Sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove: F= 1,5Si + 0 A= 30C + 0,	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4 = - 3,23A - 32,2 Cr + Mo + 2Ti + C 5Mn +30N + Ni	Rus GOS D3N 02C ante micros per per per 0,5Nb + 0,5Cu + 0	PC. Non imple ssia Ch22N5AM2 struttura EN ? FNA = max 5 FNA = 6,0 - FNA = min 1	Giappor JIS (SUS 329 10088-1 5,9 11,9 2	Auster quand Auster quand oppure	India IS Mitici D: FNA = Mitico-Fer D: FNA = SM =	Corea KS (STS 329J) (-40) - 20 ritico (Duplex) 30 - 50 8 - 15
Temperatura di Europa EN X2CrNiMoN22-5	US UN -3 S3 ne per a rrite amma ang IB-2433	D Usato SA NS 31803 Ccciai inos	nei recipien USA ASTM Type 2205 Sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove: F= 1,5Si + 0 A= 30C + 0,	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4 = - 3,23A - 32,2 Cr + Mo + 2Ti + C 5Mn +30N + Ni	Rus GOS D3N 02C ante micros per per per 0,5Nb + 0,5Cu + 0	PC. Non imple ssia ST Ch22N5AM2 struttura EN 3 FNA = max 5 FNA = 6,0 - FNA = min 1 0,5Co mule comuni er-austenitici	Giappor JIS (SUS 329 10088-1 5,9 11,9 2	Auster quand Auster quand oppure	India IS Mitici D: FNA = Mitico-Fer D: FNA = SM =	Corea KS (STS 329J) (-40) - 20 ritico (Duplex) 30 - 50 8 - 15
FINA Numero della Fe pasata sul diagra Schaeffler /de Lo ASME III div. 1 N	us UN 3 S3 ne per a rrite amma ang JB-2433	D Usato SA NS 31803 Cciai inos	nei recipien USA ASTM Type 2205 sidabili; clas FNA = 3,34I FNA = 4,44I FNA = 4,06I dove: F= 1,5Si + C A= 30C + 0, PRE = Cr +	Cina GB 022Cr22Ni5Mc sificazione media = - 2,46A - 28,6 = - 3,39A - 38,4 = - 3,23A - 32,2 Cr + Mo + 2Ti + C 5Mn +30N + Ni	Rus GOS D3N 02C ante micros per per per 0,5Nb + 0,5Cu + 0	PC. Non imple ssia ST Ch22N5AM2 struttura EN 3 FNA = max 5 FNA = 6,0 - FNA = min 1 0,5Co mule comuni er-austenitici	Giappor JIS (SUS 329 10088-1 5,9 11,9 2	Auster quand Auster quand oppure	India IS Mitici D: FNA = Mitico-Fer D: FNA = SM =	Corea KS (STS 329J) (-40) - 20 ritico (Duplex) 30 - 50 8 - 15

Acciaio 1.4462 +AT Struttura: 50% austenite, 30% ferrite, 20% fase sigma (σ). La fase sigma è indice di fragilità.

