Qualità n	nateria	le	16NiC	Cr4 Acciaio da							Scheda	Dati	
Norma di riferimento ISO 68			ISO 683	83-3: 2018				entazione			Lucefin Group		
Numero			1.5714								rev. 201	18	
Composi	zione	chimica											
 C%	Si%	Mn	%	P%	S%		Ni%	Cr%	Cu	1%			
				max	max				ma	ìХ			
0,13-0,19	0,15-0	0,40 0,70)-1,00	0,025	0,035	5 (),80-1,10	0,60-1,00	0,4	10	Scostar	nenti ammess	
± 0.02	± 0.0			$+0.005$ ± 0.0			± 0.05	± 0.05	+0	.05	per analisi di prodott o		
ر richiesta Con tenore	ouò esse di Zolfo	ere fornito co controllato (n aggiur S) 0.020-	ita di Piombo -0.040% per l	(Pb) 0. avorab	15-0.35% ilità miglic	rata 16NiCr	S4 n° 1.5715					
				tamento al c									
				fornito con trat			uto (Bi) 0,03	0-0,080%.					
Tempera	ture in	°C											
Deformazio a caldo		Normalizz +N	azione	Tempra nucleo		Carboni	trurazione	Cementazio	ne	Tempra s	•	Distensione +SR	
1150-900		870		840 -880		750-930		870-950		810-840		150	
		aria		olio, polimero o bagno sale		gassosa		bagno s		olio, polim	o sale		
										bagno sale			
Ricottura d		Ricottura		Ricottura		Tempra		Preriscaldo			Distensione		
avorabilità	l	isotermica		globulare		provetta		per saldatura			dopo saldatura		
ŀΑ		+		+AC		Jominy		La saldatura				o stato ricotto e	
									prin	na della ce			
700		860-880 ra		700 sosta		870		250			550 forn		
aria		rapido fino		4 h/per pollic		acqua		AC1	Ac:		Ms * nuc		
HB max 21	7)	650 poi ari (HB 166-2		di spessore aria (HB 156				705	005			cementato	
I ID IIIax Z I	1)	(110 100-2	17)	alia (IID 130	1-201)			735	825) ,	380* 18	3U**	
Proprietà	mecc	aniche											
16NiCr4 La	minati a	a caldo cara	tteristich	e di riferiment	o su ba	rrotto con	tempra a n	ucleo UNI 784	16: <i>′</i>	1978 Solo (come rife	erimento.	
sezione mn	1	Prova di tr	azione e	resilienza in	longitu	dinale a 2	0°C						
		R		Rp 0.2	Δ	. %	Z %	Kcu	ΗВ				
barrotto													
barrotto		N/mm ²	_	N/mm ² min.	n	nin.		J min.					
barrotto 11 30		N/mm ² 1080-1470		N/mm² min. 835	n 9		-	J min. 30 32.5	327	7-417			

-

24.0

22.5

22.0

25.0

-

Tabella di rinvenimento valori a temperatura ambiente su tondo Ø 10 mm dopo tempra a 850 °C in olio

13.4

13.6

13.8

14.2

15.5

17.0

19.2

42.5

13.2

HB

HRC

Rp 0.2

R

A Z

Κv

N/mm²

N/mm²

%

%

J

HRC cementaz.

Rinvenimento °C

13.0

42.5

13.0

42.5

13.2

ʻ4 1.5714 -	- 16NiCrS4 1.5715 EN 1027	7: 2018		Lucefin Group
	Ricottura di	Ricottura di	Trattato per struttura	Trattato per struttura
	Pelato, Rettificato	Trafilato a freddo	Pelato, Rettificato	ferritico-perlitica +FP+C Trafilato a freddo
fino a	HBW max	HBW max	HBW	HBW b)
10	-	270	-	-
16	-	260	-	-
40	217	255	156-207	156-245
63	217	255	156-207	156-240
100	217	255	156-207	156-240
	fino a 10 16 40 63	Ricottura di addolcimento +A+SH, +G Pelato, Rettificato fino a HBW max 10 - 16 - 40 217 63 217	addolcimento +A+SH, +G addolcimento +A+C Pelato, Rettificato Trafilato a freddo fino a HBW max 10 - 16 - 40 217 63 217 255 63	Ricottura di addolcimento +A+SH, +G Pelato, Rettificato fino a HBW max HBW max HBW 10 - 270 - 16 - 260 - 40 217 255 156-207 Ricottura di addolcimento +A+C Trafilato a freddo Pelato, Rettificato HBW Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 1 Trattato per struttura ferritico-perlitica +FP+SH, +G Pelato, Rettificato HBW 2 Trattato PBH MBW 2 Trattato PBH MBW 2 Trattato PBH MBW 2 Tra

 $^{^{}a)}$ per spessori inferiori a 5 mm le durezze possono essere concordate in fase di offerta o ordine $^{b)}$ per i piatti la durezza può può deviare di \pm 10%

16NiCr	4 Fucinato	UNI 8550: 1984	Solo come riferi	mento.		
sezione)	Prova di trazi	one in longitudina	ale e resilienza a 20	O°C	
mm		R	Rp 0.2	Α%	Kcu	НВ
oltre	fino a	N/mm ²	N/mm ² min	min (L)	J min (L)	per inform.
	11	1080-1470	835	9	30	327-417
11	25	880-1195	640	10	32.5	263-356
25	40	785-1080	590	10	32.5	234-327
40	60	735-980	540	11	32.5	224-295

40 60 735-980 540 11 32.5

Caratteristiche meccaniche ricavate da barrotto di riferimento sottoposto a tempra di **nucleo** e disteso

L = longitudinale

ISO 6	83-3: 2	2018 Va	lori di te	emprab	ilità Jo n	niny in	HRC g	randezz	za grand	5 mini	mo					
distan	za dal	l'estrem	ità tem	prata in	mm											
	1.5	3	5	7	9	11	13	15	20	25	30	35	40	45	50	
min	39	36	33	29	27	25	23	22	20	-	-	-	-			Н
max	47	46	44	42	40	38	36	34	32	30	29	28	28			normale
min	42	39	37	33	31	29	27	26	24	22	21	20	20			HH
max	47	46	44	42	40	38	36	34	32	30	29	28	28			ristretta
min	39	36	33	29	27	25	23	22	20	-	-	-	-			HL
max	44	43	40	38	36	34	32	30	28	26	25	24	24			ristretta
Espar	Espansione Termica 10 ⁻⁶ • K ⁻¹					>	11.1	12.1	12.9	13.5	14.1					
Modu	lo Ela	stico lo	ng.	GPa	l		210									
Modu	lo Ela	stico ta	ng.	GPa	l		80									
Calor	e Spe	cifico		J/(K	g•K)		460									
Cond	ucibili	tà Tern	nica	W/(r	n∙K)		38									
Mass	a Volu	mica		Kg/c	lm³		7.85									
Resis	tività	Elettric	a	Ohn	n∙mm²/r	n	0.18									
Cond	uttivit	à Elettr	ica	Sien	nens•m	/mm²	5.56									
°C							20	100	200	300	400	500				
II simb	olo ►	indica t	fra 20 °	C e 10	00°C, 2	0°Ce	200°C.									

EUROPA	ITALIA	SPAGNA	GERMANIA	FRANCIA	UK	SVEZIA	US
	1.18.11	LINIT	DIN	AFNOD		00	410

EUROPA	ITALIA	SPAGNA	GERMANIA	FRANCIA	UK	SVEZIA	USA
EN	UNI	UNE	DIN	AFNOR	B.S.	SS	AISI/SAE
16NiCr4	16CrNi4	F1581	15CrNi6	16NC4	637M17	2511	3215 appr.